We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genome-wide association study in NSAID-induced acute urticaria/angioedema in Spanish and Han Chinese populations

    José Antonio Cornejo-García

    Research Laboratory, UGC Allergy, Málaga General Hospital, Málaga, Spain

    Authors contributed equally

    Search for more papers by this author

    ,
    Lieh-Bang Liou

    Division of Rheumatology, Allergy & Immunology, Chang Gung Memorial Hospital at Lin-kou, Kwei-san, Tao-yuan, Taiwan and Chang Gung University College of Medicine, Kwei-san, Tao-yuan, Taiwan

    Authors contributed equally

    Search for more papers by this author

    ,
    Natalia Blanca-López

    Allergy Service, Infanta Leonor Hospital, Madrid, Spain

    ,
    Inmaculada Doña

    UGC Allergy, Málaga General Hospital, Málaga, Spain

    ,
    Chien-Hsiun Chen

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

    ,
    Yi-Chun Chou

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

    ,
    Hui-Ping Chuang

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

    ,
    Jer-Yuarn Wu

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

    ,
    Yuan-Tsong Chen

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

    ,
    María del Carmen Plaza-Serón

    Research Laboratory, UGC Allergy, Málaga General Hospital, Málaga, Spain

    ,
    Cristobalina Mayorga

    Research Laboratory, UGC Allergy, Málaga General Hospital, Málaga, Spain

    ,
    Rosa María Guéant-Rodríguez

    INSERM U-954, Nutrition-Génétique et exposition aux risques environmentaux, Faculty of Medicine, University of Nancy, Vandoeuvre-les-Nancy, France and University Hospital Center of Nancy, Vandoeuvre-les-Nancy, France

    ,
    Shih-Chang Lin

    Division of Allergy and Immunology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan

    ,
    María José Torres

    UGC Allergy, Málaga General Hospital, Málaga, Spain

    ,
    Paloma Campo

    UGC Allergy, Málaga General Hospital, Málaga, Spain

    ,
    Carmen Rondón

    UGC Allergy, Málaga General Hospital, Málaga, Spain

    ,
    José Julio Laguna

    Allergy Service, Cruz Roja Central Hospital, Madrid, Spain

    ,
    Javier Fernández

    Allergy Service, Alicante University General Hospital, Alicante, Spain

    ,
    Jean-Louis Guéant

    INSERM U-954, Nutrition-Génétique et exposition aux risques environmentaux, Faculty of Medicine, University of Nancy, Vandoeuvre-les-Nancy, France and University Hospital Center of Nancy, Vandoeuvre-les-Nancy, France

    ,
    Gabriela Canto

    Allergy Service, Infanta Leonor Hospital, Madrid, Spain

    ,
    Miguel Blanca

    UGC Allergy, Málaga General Hospital, Málaga, Spain

    &
    Ming Ta Michael Lee

    * Author for correspondence

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan and Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama Kanagawa 230–0045, Japan and Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.

    Published Online:https://doi.org/10.2217/pgs.13.166

    Aim: Acute urticaria/angioedema (AUA) induced by cross-intolerance to NSAIDs is the most frequent clinical entity in hypersensitivity reactions to drugs. In this work, we conducted a genome-wide association study in Spanish and Han Chinese patients suffering from NSAID-induced AUA. Materials & methods: A whole-genome scan was performed on a total of 232 cases (112 Spanish and 120 Han Chinese) with NSAID-induced AUA and 225 unrelated controls (124 Spanish and 101 Han Chinese). Results: Although no polymorphism reached genome-wide significance, we obtained suggestive associations for three clusters in the Spanish group (RIMS1, BICC1 and RAD51L 1) and one region in the Han Chinese population (ABI3BP). Five regions showed suggestive associations after meta-analysis: HLF, RAD51L1, COL24A1, GalNAc-T13 and FBXL7. A majority of these genes are related to Ca2+, cAMP and/or P53 signaling pathways. Conclusion: The associations described were different from those related to the metabolism of arachidonic acid and could provide new mechanisms underlying NSAID-induced AUA.

    Original submitted 7 June 2013; Revision submitted 19 August 2013

    References

    • Fosbol EL, Gislason GH, Jacobsen S et al. The pattern of use of non-steroidal anti-inflammatory drugs (NSAIDs) from 1997 to 2005: a nationwide study on 4.6 million people. Pharmacoepidemiol. Drug Saf.17(8),822–833 (2008).
    • Motola D, Vaccheri A, Silvani MC et al. Pattern of NSAID use in the Italian general population: a questionnaire-based survey. Eur. J. Clin. Pharmacol.60(10),731–738 (2004).
    • Kowalski ML, Makowska JS, Blanca M et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) – classification, diagnosis and management: review of the EAACI/ENDA(#) and GA2LEN/HANNA*. Allergy66(7),818–829 (2011).
    • Szczeklik A, Nizankowska E, Sanak M. Hypersensitivity to aspirin and non-steroidal antiinflammatory drugs. In: Midleton´s Allergy, Principles and Practice. Adkinson Nf BB, Busse WW, Holgate S, Lemanske RF, Simons FE (Eds). Mosby, PA, USA, 1227–1243 (2009).
    • Dona I, Blanca-Lopez N, Cornejo-Garcia JA et al. Characteristics of subjects experiencing hypersensitivity to non-steroidal anti-inflammatory drugs: patterns of response. Clin. Exp. Allergy41(1),86–95 (2011).
    • Dona I, Blanca-Lopez N, Torres MJ et al. Drug hypersensitivity reactions: response patterns, drug involved, and temporal variations in a large series of patients. J. Investig. Allergol. Clin. Immunol.22(5),363–371 (2012).
    • Cornejo-Garcia JA, Blanca-Lopez N, Dona I et al. Hypersensitivity reactions to non-steroidal anti-inflammatory drugs. Curr. Drug Metab.10(9),971–980 (2009).
    • Romano A, Torres MJ, Castells M, Sanz ML, Blanca M. Diagnosis and management of drug hypersensitivity reactions. J. Allergy Clin. Immunol.127(3 Suppl.),S67–S73 (2011).
    • Szczeklik A, Gryglewski RJ, Czerniawska-Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin-sensitive patients. Br. Med. J.1(5949),67–69 (1975).
    • 10  Christie PE, Tagari P, Ford-Hutchinson AW et al. Urinary leukotriene E4 after lysine-aspirin inhalation in asthmatic subjects. Am. Rev. Respir. Dis.146(6),1531–1534 (1992).
    • 11  Gaber F, Daham K, Higashi A et al. Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax63(12),1076–1082 (2008).
    • 12  Antczak A, Montuschi P, Kharitonov S, Gorski P, Barnes PJ. Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am. J. Respir. Crit. Care Med.166(3),301–306 (2002).
    • 13  Cowburn AS, Sladek K, Soja J et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J. Clin. Investig.101(4),834–846 (1998).
    • 14  Sanak M, Kielbasa B, Bochenek G, Szczeklik A. Exhaled eicosanoids following oral aspirin challenge in asthmatic patients. Clin. Exp. Allergy34(12),1899–1904 (2004).
    • 15  Swierczynska M, Nizankowska-Mogilnicka E, Zarychta J, Gielicz A, Szczeklik A. Nasal versus bronchial and nasal response to oral aspirin challenge: Clinical and biochemical differences between patients with aspirin-induced asthma/rhinitis. J. Allergy Clin. Immunol.112(5),995–1001 (2003).
    • 16  Szczeklik A, Sladek K, Dworski R et al. Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am. J. Respir. Crit. Care Med.154(6 Pt 1),1608–1614 (1996).
    • 17  Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma. J. Allergy Clin. Immunol.113(4),771–775 (2004).
    • 18  Setkowicz M, Mastalerz L, Podolec-Rubis M, Sanak M, Szczeklik A. Clinical course and urinary eicosanoids in patients with aspirin-induced urticaria followed up for 4 years. J. Allergy Clin. Immunol.123(1),174–178 (2009).
    • 19  Mastalerz L, Sanak M, Gawlewicz-Mroczka A, Gielicz A, Cmiel A, Szczeklik A. Prostaglandin E2 systemic production in patients with asthma with and without aspirin hypersensitivity. Thorax63(1),27–34 (2008).
    • 20  Sanak M, Gielicz A, Bochenek G, Kaszuba M, Nizankowska-Mogilnicka E, Szczeklik A. Targeted eicosanoid lipidomics of exhaled breath condensate provide a distinct pattern in the aspirin-intolerant asthma phenotype. J. Allergy Clin. Immunol.127(5),1141–1147.e1142 (2011).
    • 21  Higashi N, Mita H, Ono E et al. Profile of eicosanoid generation in aspirin-intolerant asthma and anaphylaxis assessed by new biomarkers. J. Allergy Clin. Immunol.125(5),1084–1091.e1086 (2010).
    • 22  Gray PA, Warner TD, Vojnovic I et al. Effects of non-steroidal anti-inflammatory drugs on cyclo-oxygenase and lipoxygenase activity in whole blood from aspirin-sensitive asthmatics vs healthy donors. Br. J. Pharmacol.137(7),1031–1038 (2002).
    • 23  Duroudier NP, Tulah AS, Sayers I. Leukotriene pathway genetics and pharmacogenetics in allergy. Allergy64(6),823–839 (2009).
    • 24  Kim SH, Ye YM, Palikhe NS, Kim JE, Park HS. Genetic and ethnic risk factors associated with drug hypersensitivity. Curr. Opin. Allergy Clin. Immunol.10(4),280–290 (2010).
    • 25  Choi JH, Park HS, Oh HB et al. Leukotriene-related gene polymorphisms in ASA-intolerant asthma: an association with a haplotype of 5-lipoxygenase. Hum. Genet.114(4),337–344 (2004).
    • 26  Jinnai N, Sakagami T, Sekigawa T et al. Polymorphisms in the prostaglandin E2 receptor subtype 2 gene confer susceptibility to aspirin-intolerant asthma: a candidate gene approach. Hum. Mol. Genet.13(24),3203–3217 (2004).
    • 27  Kim SH, Choi JH, Holloway JW et al. Leukotriene-related gene polymorphisms in patients with aspirin-intolerant urticaria and aspirin-intolerant asthma: differing contributions of ALOX5 polymorphism in Korean population. J. Korean Med. Sci.20(6),926–931 (2005).
    • 28  Kim SH, Oh JM, Kim YS et al. Cysteinyl leukotriene receptor 1 promoter polymorphism is associated with aspirin-intolerant asthma in males. Clin. Exp. Allergy36(4),433–439 (2006).
    • 29  Kim SH, Yang EM, Park HJ, Ye YM, Lee HY, Park HS. Differential contribution of the CysLTR1 gene in patients with aspirin hypersensitivity. J. Clin. Immunol.27(6),613–619 (2007).
    • 30  Park JS, Chang HS, Park CS et al. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet. Genomics15(7),483–492 (2005).
    • 31  Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am. J. Respir. Cell Mol. Biol.23(3),290–296 (2000).
    • 32  Cornejo-Garcia JA, Jagemann LR, Blanca-Lopez N et al. Genetic variants of the arachidonic acid pathway in non-steroidal anti-inflammatory drug-induced acute urticaria. Clin. Exp. Allergy42(12),1772–1781 (2012).
    • 33  Agundez JA, Ayuso P, Cornejo-Garcia JA et al. The diamine oxidase gene is associated with hypersensitivity response to non-steroidal anti-inflammatory drugs. PLoS ONE7(11),e47571 (2012).
    • 34  Kim JH, Park BL, Cheong HS et al. Genome-wide and follow-up studies identify CEP68 gene variants associated with risk of aspirin-intolerant asthma. PLoS ONE5(11),e13818 (2010).
    • 35  Park BL, Kim TH, Kim JH et al. Genome-wide association study of aspirin-exacerbated respiratory disease in a Korean population. Hum. Genet.132(3),313–321 (2013).
    • 36  Blanca-Lopez N, J Torres M, Dona I et al. Value of the clinical history in the diagnosis of urticaria/angioedema induced by NSAIDs with cross-intolerance. Clin. Exp. Allergy43(1),85–91 (2013).
    • 37  Han Y, Kaeser PS, Sudhof TC, Schneggenburger R. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron69(2),304–316 (2011).
    • 38  Weiss N, Sandoval A, Kyonaka S, Felix R, Mori Y, De Waard M. Rim1 modulates direct G-protein regulation of Ca(v)2.2 channels. Pflugers Arch. Eur. J. Physiol.461(4),447–459 (2011).
    • 39  Hui Y, Funk CD. Cysteinyl leukotriene receptors. Biochem. Pharmacol.64(11),1549–1557 (2002).
    • 40  Thompson MD, Takasaki J, Capra V et al. G-protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective. Mol. Diagn. Ther.10(6),353–366 (2006).
    • 41  Fujishima H, Sanchez Mejia RO, Bingham CO 3rd et al. Cytosolic phospholipase A2 is essential for both the immediate and the delayed phases of eicosanoid generation in mouse bone marrow-derived mast cells. Proc. Natl Acad. Sci. USA96(9),4803–4807 (1999).
    • 42  Franco R, Pacheco R, Lluis C, Ahern GP, O’Connell PJ. The emergence of neurotransmitters as immune modulators. Trends Immunol.28(9),400–407 (2007).
    • 43  Mikami N, Fukada S, Yamamoto H, Tsujikawa K. Neuronal derivative mediators that regulate cutaneous inflammations. Crit. Rev. Immunol.32(4),307–320 (2012).
    • 44  Chabardes D, Imbert-Teboul M, Elalouf JM. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell. Signal.11(9),651–663 (1999).
    • 45  Piazzon N, Maisonneuve C, Guilleret I, Rotman S, Constam DB. Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing. J. Mol. Cell Biol.4(6),398–408 (2012).
    • 46  Wymann MP, Schneiter R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol.9(2),162–176 (2008).
    • 47  Serra-Pages M, Olivera A, Torres R, Picado C, De Mora F, Rivera J. E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. J. Leukoc. Biol.92(6),1155–1165 (2012).
    • 48  Weston MC, Peachell PT. Regulation of human mast cell and basophil function by cAMP. Gen. Pharmacol.31(5),715–719 (1998).
    • 49  Wakoh T, Uekawa N, Terauchi K et al. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression. Biochem. Biophys. Res. Commun.380(4),807–812 (2009).
    • 50  Kopp E, Ghosh S. Inhibition of NF-kappaB by sodium salicylate and aspirin. Science265(5174),956–959 (1994).
    • 51  Stark LA, Din FV, Zwacka RM, Dunlop MG. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J.15(7),1273–1275 (2001).
    • 52  Alfonso LF, Srivenugopal KS, Arumugam TV, Abbruscato TJ, Weidanz JA, Bhat GJ. Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells. Int. J. Oncol.34(3),597–608 (2009).
    • 53  Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res.40(13),5795–5818 (2012).
    • 54  Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair7(5),686–693 (2008).
    • 55  Fornander LH, Frykholm K, Reymer A, Renodon-Corniere A, Takahashi M, Norden B. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination. Nucleic Acids Res.40(11),4904–4913 (2012).
    • 56  Hirose K, Inukai T, Kikuchi J et al. Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19). Blood116(6),962–970 (2010).
    • 57  Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab.4(1),25–36 (2006).
    • 58  Xie G, Wong CC, Cheng KW, Huang L, Constantinides PP, Rigas B. Regioselective oxidation of phospho-NSAIDs by human cytochrome P450 and flavin monooxygenase isoforms: implications for their pharmacokinetic properties and safety. Br. J. Pharmacol.167(1),222–232 (2012).
    • 59  Zhu Y, Zhang QY. Role of intestinal cytochrome p450 enzymes in diclofenac-induced toxicity in the small intestine. J. Pharmacol. Exp. Ther.343(2),362–370 (2012).
    • 60  Yang J, Dong H, Hammock BD. Profiling the regulatory lipids: another systemic way to unveil the biological mystery. Curr. Opin. Lipidol.22(3),197–203 (2011).
    • 61  Matsuo N, Tanaka S, Gordon MK, Koch M, Yoshioka H, Ramirez F. CREB-AP1 protein complexes regulate transcription of the collagen XXIV gene (Col24a1) in osteoblasts. J. Biol. Chem.281(9),5445–5452 (2006).
    • 62  Chiappara G, Chanez P, Bruno A et al. Variable p-CREB expression depicts different asthma phenotypes. Allergy62(7),787–794 (2007).
    • 63  Agrawal B, Krantz MJ, Parker J, Longenecker BM. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res.58(18),4079–4081 (1998).
    • 64  Cloosen S, Thio M, Vanclee A et al. Mucin-1 is expressed on dendritic cells, both in vitro and in vivo. Int. Immunol.16(11),1561–1571 (2004).
    • 65  Leong CF, Raudhawati O, Cheong SK, Sivagengei K, Noor Hamidah H. Epithelial membrane antigen (EMA) or MUC1 expression in monocytes and monoblasts. Pathology35(5),422–427 (2003).
    • 66  Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell7(2),167–178 (2005).
    • 67  Rahn JJ, Shen Q, Mah BK, Hugh JC. MUC1 initiates a calcium signal after ligation by intercellular adhesion molecule-1. J. Biol. Chem.279(28),29386–29390 (2004).
    • 68  Zhao J, Wei J, Mialki RK et al. F-box protein FBXL19-mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation. Nat. Immunol.13(7),651–658 (2012).
    • 69  Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet.11(6),415–425 (2010).
    • 70  Spencer C, Hechter E, Vukcevic D, Donnelly P. Quantifying the underestimation of relative risks from genome-wide association studies. PLoS Genet.7(3),e1001337 (2011).
    • 71  Park JH, Wacholder S, Gail MH et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet.42(7),570–575 (2010).
    • 72  Genomes Project C, Abecasis GR, Altshuler D et al. A map of human genome variation from population-scale sequencing. Nature467(7319),1061–1073 (2010).